Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The field of spintronics has seen a surge of interest in altermagnetism due to novel predictions and many possible applications. MnTe is a leading altermagnetic candidate that is of significant interest across spintronics due to its layered antiferromagnetic structure, high Neel temperature (TN ≈ 310 K) and semiconducting properties. The results on molecular beam epitaxy (MBE) grown MnTe/InP(111) films are presented. Here, it is found that the electronic and magnetic properties are driven by the natural stoichiometry of MnTe. Electronic transport and in situ angle‐resolved photoemission spectroscopy show the films are natively metallic with the Fermi level in the valence band and the band structure is in good agreement with first‐principles calculations for altermagnetic spin‐splitting. Neutron diffraction confirms that the film is antiferromagnetic with planar anisotropy and polarized neutron reflectometry indicates weak ferromagnetism, which is linked to a slight Mn‐richness that is intrinsic to the MBE‐grown samples. When combined with the anomalous Hall effect, this work shows that the electronic response is strongly affected by the ferromagnetic moment. Altogether, this highlights potential mechanisms for controlling altermagnetic ordering for diverse spintronic applications.more » « less
-
Molecular dynamics is a fundamental property of metal complexes. These dynamic processes, especially for paramagnetic complexes under external magnetic fields, are in general not well understood. Quasielastic neutron scattering (QENS) in 0–4 T magnetic fields has been used to study the dynamics of Co(acac) 2 (D 2 O) 2 ( 1-d4 , acac = acetylacetonate). At 80–100 K, rotation of the methyl groups on the acac ligands is the dominant dynamical process. This rotation is slowed down by the magnetic field increase. Rotation times at 80 K are 5.6(3) × 10 −10 s at 0 T and 2.04(10) × 10 −9 s at 4 T. The QENS studies suggest that methyl groups in these paramagnetic Co( ii ) molecules do not behave as isolated units, which is consistent with results from earlier magnetic susceptibility studies indicating the presence of intermolecular interactions. DFT calculations show that unpaired electron spin density in 1 is dispersed to the atoms of both acac and H 2 O ligands. Methyl torsions in 1-d4 have also been observed at 5–100 K in inelastic neutron spectroscopy (INS). The QENS and INS results here help understand the dynamics of the compound in the solid state.more » « less
An official website of the United States government
